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Overview of the tutorial

• Introduction

• Graph exploration

• The random walk and its variants

• Deterministic walks

• Map construction in anonymous networks

• Diffusive load balancing

• Continuous diffusion

• The rotor-router model
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• Mobile robots search for an exit from a labyrinth

• Biological agents hunt for prey

• Network crawler processes traverse hyperlinks

 GoogleBot web cache update

 Facebook link prediction

• Token circulation is at the heart of many
distributed algorithms

Where do we observe walks on networks?

3

Computational tasks involving 
”walkers” appear in diverse contexts:

Source: Georgia Tech
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• An agent is a mobile unit hosted by a network node, capable of:

• gathering local information about the environment

• local computations at a node

• migration to another node along a network link.

• The agent is equipped with state information (memory):

• the state is modified only when the agent is located at network nodes

• the state remains intact when traversing network links.

• Our task in Distributed Computing:

Understanding the power and capabilities of agent-based algorithms.

The theoretical framework
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Network Exploration
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The network exploration problem

 A walker is placed on some node of the input network

 The walker is allowed to traverse edges (links) of the network

 The goal is to visit all the nodes of the graph at least once
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Objective: Minimize the cover time

Complete the ”first exploration”
of all nodes as quickly as possible.

100 years of CS theory behind the problem
(automata on graphs, st-connectivity, L=SL,…)

Network Exploration
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Example: How to deploy a robot vacuum cleaner? 

Global knowledge
Global computation

Optimal solution

Local awareness
Restricted resources

Resilient solution

Traveling Salesman Problem Random Walk
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The network:

• Think locally: the global topology of the network is not known

• The network may potentially change in time

• We may possibly know some global parameters

• a bound on n – the number of network nodes

• we may have a rough idea of the degree distribution in the graph

• Network links are undirected! (like Facebook)

The agent:

• For most of the time, we see the agent as a ”crawler process”
(a bit like GoogleBot)

• When visiting a node, we learn its neighbors

• this comes with a fixed cost

• Only following links is possible – teleportation is not allowed
(e.g. because of no numeric node ID-s)

The local setting
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Motivation:

• Focuses our attention on mobile agent algorithms which behave 
“uniformly” over all nodes of the network.

• Profound implications in other areas: log-space complexity theory,
fault-tolerant routing, token distribution schemes…

• Allows us to test limits of computability.

Anonymous Network Model [Yamashita & Kameda, 1996]

Computation on Anonymous Networks
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Anonymity of nodes — computations performed by the agent cannot
make use of any identifying information specific to the node at which
the agent is located. 
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• The explored graph G = (V,E) is simple, undirected, and connected;
|V|=n, |E|=m

• The nodes of the graph do not have any labels or colors which are known to 
the agent (anonymous graph property)

• The agent is an automaton with state memory   

• When located at a vertex, the agent can distinguish among the edges 
adjacent to the current node

• The agent is aware of the edge by which it entered the current node

• The agent is aware of a local port ordering at nodes.

• No information may be written at nodes.

The Anonymous Network Model
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The Anonymous Network Model

Example: The local view of an agent in the anonymous model

We assume throughout that in the anonymous model ports adjacent to each node
are labeled with consecutive integers, from 1 to its degree.
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Modeling network data
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Example: The global perspective
(i.e., the anonymous network model, as seen by an external observer)
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Some examples
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Q1: We know that G is an anonymous tree. Design an agent which explores G.

• What is the cover time of the agent?

• What is the memory size of this agent?

• Does the algorithm need to know the number of nodes n?

• Does the problem get harder if we require the agent to stop after 
exploration?
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Some examples
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Q2: Suppose you are lost in an unknown, dark maze (modeled by a graph on n
nodes) and you wish to escape from it. 

• How would you go about this, assuming all locations in the maze are 
numbered with unique identifiers from the set {1, 2, …, n}?

• How would you go about this, assuming all locations look exactly the same, 
but that you can tell by which port number you enter and leave a given 
location (=anonymous graph model).

In both cases, try to bound the time and space required by the algorithm 
(agent) in terms of n.

Note: You should not be assuming anything about the 
structure of the graph. Would it make life easier if we
knew the graph was a subgraph of the grid, with a sense
of direction (N-S-E-W), as shown in the figure?



The Random Walk
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The random walk

• The walker is placed at any node of an unknown network G = (V,E)…

• The walker leaves each node along one of the adjacent links,
chosen uniformly at random

• The process is Markovian: the next step of exploration does not depend on 
the exploration history

16

Inspired by nature: Brownian motion
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Why use the random walk?

 Simple, resource-efficient, independent of network location

 Recovers quickly after a non-adversarial modification of the graph

 Covers web-type graphs quickly (in expectation)

 Covers grid-type graphs quickly (in expectation)

Disadvantages?

 Hopeless in a worst-case setting

 Does not learn anything from/about the environment

 Slow in some non-regular graphs

 Not always the best ”team strategy”

The random walk as an exploration strategy
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• Information search/packet circulation in p2p networks
– an alternative to flooding
[Gkantsidis 2004]

• Sampling of nodes in a web or social network
[Gjoka et al 2010]

• Self-stabilizing mutual exclusion
(tokens following random walks meet and coalesce, until 1 remains)
[Israeli-Jalfon 1990]

• Picking a spanning tree of a graph uniformly at random
(applications of loop-erased walks)
[Broder 1988, Wilson 1995]

Where to use the random walk?

Classical networking applications:

Adrian Kosowski                                                     Walks on Graphs: Exploration and Diffusion



19

How to analyze the random walk?

The random walk algorithm

• First parameter: commute time Com(u,v)

• What is the expected number of steps for a random walk to reach node 
v from node u, and then return to node v?

• Theorem [Chandra, Raghavan, Ruzzo, Smolensky, Tiwari 1989]: 

Com(u,v) = 2 m R(u,v).

• Theorem [Foster 1949]: 

 {u,v}  E  R (u,v) = n – 1.

_

u

v

+
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How to analyze the random walk?

The random walk algorithm

• Second parameter: cover time 

• Cov(u) - what is the expected number of steps for a random walk to 
reach all nodes of the graph, starting from node u?

• Cov = maxuV Cov(u)

• Theorem [Aleliunas, Karp, Lipton, Lovasz, Rackoff 1979]
Cover time is upper bounded by sum of commute times along the 
edges of any spanning tree of the graph.

• Theorem [Feige 1995]
By using the best spanning tree, we obtain for any graph:
Cov  4n3 / 27

• the bound is tight, and the worst-case example is precisely known
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How to analyze the random walk?

The random walk algorithm

• The lollipop graph – worst-case cover time 4n3 / 27 - o(n3)

n / 3

2n / 3
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How to analyze the random walk?

The random walk algorithm

Order of the cover time for different graph classes

• Cliques n log n

• Paths, cycles n2

• 2-dimensional grids n log2 n

• 3-dimensional grids n log n

• Complete k-ary trees n log2 n / log k

• Expanders n log n

• Regular graphs not more than n2
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Additional properties: how ”regular” is the random walk?

The random walk algorithm

• In the limit, the random walk visits all edges with the same frequency 
(1/|E|)

• If the graph is not bipartite, then in the limit, at any given moment:
The probability of finding ourselves at a vertex v is proportional to the 
degree of v.

• Rate of convergence to regularity: blanket time B

• Intuitively, what is the expected number of steps of a random walk 
before all edges of the graph have been visited a similar number of 
times?

• Theorem [Ding, Lee, Peres 2011]

Cov    B     const * Cov
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Disadvantages of the random walk…

• Completely useless in terms of worst-case performance

Partial remedy: use a deterministic strategy instead (*n2 time overhead) 
[TBD]

• Expected cover time of (n3) for some weakly connected graphs

Partial remedy: use Metropolis-Hastings biasing [TBD]

• Short walks may get stuck in local network neighborhoods

More precisely: a random walk of small length t is expected to visit about √t 
edges [Broder et al. 1994], but may possibly visit very few nodes

Partial remedy: use Metropolis-Hastings biasing [TBD]

Tweaking the random walk…
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Biased walks
and the Metropolis algorithm
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• A biased walk is one in which the next node is chosen by the walker from 
among its neighbors, but transition probabilities need not be equal.

• The bias can be:

• Topological – based on the structure of the graph, degrees/importance of 
nodes, etc.,

• Dependant on exploration history – e.g. walks which never back-track to 
the node they have just come from

• In general, we want to keep the process (almost) reversible Markovian

• A simple way to obtain the desired form of bias (Markovian, reversible):

• put positive real-valued weights on edges

• at each step, choose an incident edge with probability proportional
to its weight (relative to the sum of all weights of incident edges)

The probability of the agent being on an edge with weight w is w / ∑eE w(e).

Biased walks
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• There have been several recent papers showing how to bias random walks, 
given helper information about the topology of the graph, etc.

• The effort required to collect this information means that effectively
a ”normal” walker needs to do (n3) steps, anyway.

• There is an exception: the Metropolis-Hastings walk weighted by node
degrees [Metropolis 1959, Nonaka et al. 2010]

• Construction of the Markovian process:

• For each edge connecting u and v, put the following weight on it:

w({u,v}) = min { 1 / deg(u),  1 / deg(v) }

• Add self-loops at each node, so that the sum of weights of all incident
edges sums to 1, for all nodes.

• Corollary. In the Metropolis walk, all nodes are visited equally often during
exploration (with the same limit probability of 1/n).

Metropolis walks
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NextState (v: node) 

u <- neighbor of v in G chosen uniformly at random;

move to u;

with probability max{1 - deg(v)/deg(u), 0} move back to v;
\
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• There have been several recent papers showing how to bias random walks, 
given helper information about the topology of the graph, etc.

• The effort required to collect this information means that effectively
a ”normal” walker needs to do (n3) steps, anyway.

• There is an exception: the Metropolis-Hastings walk weighted by node
degrees [Metropolis 1959, Nonaka et al. 2010]

• The walk can be implemented using an agent, as shown below:

Metropolis walks

[Lee at al. 2012, K. 2013]
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A Metropolis walker explores a graph in O(n2 log(n)) steps w.h.p.
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• The Metropolis walk has a worst-case performance superior to that of the 
random walk

• Note: the random walk does not carry any state when traversing edges.
A little bit of memory is necessary to implement Metropolis-Hastings.

Metropolis walks

Any strategy with o(n3) cover time requires some state memory carried

over edges.

A Metropolis walker can be implemented in O(log n) bits of memory.

[Nonaka at al. 2010]

Adrian Kosowski                                                     Walks on Graphs: Exploration and Diffusion



Adrian Kosowski                                                     Walks on Graphs: Exploration and Diffusion

Some questions
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Q3: Consider the subdivided star graph on n = 2k + 1 nodes.

• Estimate (up to multiplicative constants) the cover time of the unweighted
random walk on this graph. 

• Estimate (up to multiplicative constants) the cover time of the Metropolis 
walk on this graph. 
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Some questions

31

Q4: Consider a modification of the k-node clique, such that on some k of its
edges someone has inserted an additional node.

• Describe a weighting of edges of this graph such that the (vertex) cover
time of the weighted random walk on this graph is as small as possible (up
to multiplicative constants).  What is this cover time?

• Can this weighted walk be implemented by a mobile agent without loss of 
time complexity? (And why not?)



A variant of the Metropolis walk explores all graphs O(n2 log(n)) steps

w.h.p., and not more slowly (up to a factor of 2) than the random walk.
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• Note: the Metropolis walk is slower than the random walk on many graphs –
even for the star.

• Is this strategy of practical importance?

• Yes. There are several elegant ways of combining the Metropolis walk 
with the random walk.

Combining Metropolis walks and Random walks
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• Note: the Metropolis walk is slower than the random walk on many graphs –
even for the star.

• Is this strategy of practical importance?

• Yes. There are several elegant ways of combining the Metropolis walk 
with the random walk.

• The above method relies on knowledge of the average degree d = 2m/n.
(can be done without.)

NextState (v: node) 

u <- neighbor of v in G chosen uniformly at random;

move to u;

with probability max{(deg-1(u)+d -1) / (deg -1(v)+d -1), 0} move back to v;

Combining Metropolis walks and Random walks
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•

• Potentially useful property in local searches around network neighborhoods.

In expectation, a Metropolis walk of length t  D2 discovers

at least t1/2 nodes.

Short Metropolis walks

[K. 2013]
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• Advantages?

• Simple,  resource-efficient, independent of network location

• Equitable – uses all nodes fairly

• Recovers quickly after a slight modification of the graph

• Covers web-type graphs quickly in almost linear time

• Expected cover time not worse than O(n2 log n)

• After some fine-tuning, short Metropolis walks visit nodes more quickly
than short random walks

• Disadvantages?

• Unbounded pessimistic cover time

• In practical scenarios, a little slower than the Random Walk

Metropolis walks
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Deterministic Network Exploration
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Assumptions of the labeled graph model

• The explored graph G = (V,E) is simple, undirected, and connected

• The nodes of the graph do not have any labels or colors which are known 
to the agent (anonymous graph property)

• When located at a vertex, the agent can distinguish among the edges 
adjacent to the current node

• The agent is aware of the edge by which it entered the current node

• There are two distinct types of local orientations of edges at a node:

The labeled graph model

explicit port labelingimplicit cyclic ordering

37
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How to make the random walk deterministic?

De-randomizing random walks

• We perform an exploration using a robot equipped with some memory 
(state) and knowledge of the ports in the graph:

f ( STATE, IN-PORT, DEGREE ) = ( STATE’, OUT-PORT )

• The following properties are extremely desirable:

• The number of states of the robot should be as small as possible

• The worst-case cover time of the robot should be polynomial

• If possible, other properties should be retained
(e.g. equity of edge visits)

• First variant: we assume nothing about the port labeling of the graph (i.e., 
worst case labeling)

• First approach: sequences of port numbers that work for any graph…

38
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Universal Traversal Sequences (UTS-s)

Universal Sequences

• A UTS(n,d) is a sequence of numbers (t1… tk) in 1..d, such that the robot
f ( STEPi, PORT ?, DEGREE d ) = (STEPi+1, PORT ti)
covers any d-regular graph of (at most) n vertices in at most k steps.

• Theorem [Aleliunas, Karp, Lipton, Lovasz, Rackoff 1979]
For any n, there exists a UTS(n,d) of length k  n5 log n

• Proof: the probabilistic method

Intuition:

If a uniformly random sequence of K moves in a graph explores
any graph from graph class G with probability at least p, 

then:

There exists a fixed sequence of K moves which explores at least
p |G| graphs from G.

39
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How much memory is required to construct a UTS efficiently?

Universal Sequences

• Nisan’s generic derandomizer (1992): O(log2 n) memory

• but the length of the sequence is no longer polynomial – O(nlog n) 

• Not clear even if a sequence of polynomial length can be constructed in 
polynomial time…

• Some explicit constructions are known, e.g. for cycles…

• It turns out that it is easier to apply UXS-s instead!

Universal Exploration Sequences (UXS-s)

• A UXS(n,d) is a sequence of numbers (x1… xk) in 1..d, such that the robot
f ( STEPi, PORT p, DEGREE d) = (STEPi+1, PORT [ p + xi ] )
covers any d-regular graph of (at most) n vertices in at most k steps.

40
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• Deterministic exploration algorithms are obtained by de-randomizing 
randomized exploration algorithms.

• Universal Exploration Sequences (UXS) [Aleliunas et al. 1979, Koucky 2001]

The walk is defined by a sequence of port increments [x1, x2, x3,…, xT]

in step t:      OUTPORTt+1 = INPORTt + xt (modulo the degree of the node)

For all n, there exists a UXS which explores all graphs of at most n nodes
in T = O(n5 log n) steps. [= n3 cover time of Random Walk   × n2 log n]

Deterministic Network Exploration Algorithms
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f ( STEPt, PORT p, DEGREE d) = (STEPt+1, PORT [ p + xt ] mod d)
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• Deterministic exploration algorithms are obtained by de-randomizing 
randomized exploration algorithms.

• Universal Tables

An extension of the concept of universal sequences for de-randomizing 
stateful (non-Markovian) randomized algorithms. [Also extends Dessmark et al. 2004]

Theorem. For all n, there exists a Universal Table which explores all graphs
of at most n nodes, in T = O(n4 log2 n) steps.

[= n2 log n cover time of Metropolis Walk   × n2 log n]

• Universal Tables are shorter than UXS-s, but do not easily allow the 
agent to revert to its initial location.

• Universal Tables / UXS-s can be implemented in an agent with
O(log n) bits of state memory.

Deterministic Network Exploration Algorithms
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Overview of Network Exploration Algorithms

Agent’s Algorithm State memory Cover time Reference

Random Walk: none O(n3)
(expectation)

[Aleliunas et al. 1979]

Metropolis Walk: O(log log n) O(n2 log n)
(expectation)

[Nonaka et al. 2010, K. 
13]

Universal Table: O(log n) O(n4 log2 n) [Aleliunas et al. 1979, 
Nonaka et al. 2010]

Randomized approaches:

• Fast and memory-efficient
• No knowledge of global parameters is required
• Process termination is problematic.

Deterministic approaches:

• Lower bounds: W(n2) steps, W(log n) memory bits [Borodin et al. 1992, Fraigniaud et al. 2005]

• Termination is possible, given upper bound on n.
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The L = SL complexity class problem

Touching the foundations of computer science

• L is the complexity class containing decision problems which can be solved 
by a deterministic Turing machine using a logarithmic amount of memory 
space.

• SL (Symmetric Logspace) is the complexity class of problems log-space 
reducible to USTCON (undirected s-t connectivity), which is the problem of 
determining whether two vertices of a graph are in the same connected 
component

A positive answer [Reingold, STOC 2005]

• UXS(n,d) can be ”printed” by a Turing machine with O(log n) memory

• By applying a slight modification of the sequence, we can explore any (not 
necessarily regular) graph of order at most n, thus solving USTCON.

• Note: the problem for the related oblivious (UTS-based) variant is open!



45

• Models with whiteboards

• The agent can write and read information on designated memory areas
at nodes, known as whiteboards.

• For exploration problems, it is sufficient to be able to mark a node as 
``already visited’’; this allows us to implement DFS (in 2m steps).

• A refined algorithm performs in m+O(n) steps. [Pelc and Panaite, 1999]

• Models with pebbles

• The agent can drop a marker (pebble, token) at some node. If the pebble
is moveable, it can move it to an adjacent node. The number of available
pebbles is limited.

• With one moveable pebble, deterministic exploration and identification
of G can be performed in O(mn) time, without knowledge of any upper
bound on n [Dudek et al., 1997]

• Allowing the agent to put a pebble on its starting location is also
sufficient, but the time is then O(n3D). [Chalopin, K., Das 2010]

Notes on other graph exploration models
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• We consider strongly connected, but not necessarily symmetric, directed
graphs

• There exist directed graphs for which exploration requires exponential time 
(even for randomized algorithms, in expectation)

• Lower bound for random-walk type algorithms: the combination lock graph
[Bender & Slonim 1994; figure from Bender et al. 2002]

Exploration of directed graphs
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• We consider strongly connected, but not necessarily symmetric, directed
graphs

• There exist directed graphs for which exploration requires exponential time 
(even for randomized algorithms, in expectation)

• Lower bound for random-walk type algorithms: the combination lock graph 
[Bender & Slonim 1994; figure from Bender et al. 2002]

• Allowing the agent to use pebbles reduces exploration time [Bender et al. 2002]

• A single pebble: exploration and identification in polynomial time
(roughly n8), but knowledge of an upper bound on n is required

• O(log log n) pebbles: exploration and identification in polynomial time
without knowledge of n.

Exploration of directed graphs
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Map construction
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The map construction problem

• A mobile agent is placed at some node of the input graph.

• The agent moves around the graph, traversing its edges, and collecting
all possible information about the topology of the graph.

• The agent constructs a ”map” which encodes all of this information.

Why construct a map of an anonymous graph?

• Software agents for managing network resources may use information
about the network topology to optimize their performance.

• Agents may need to break symmetries in order to, e.g., solve leader 
election or achieve rendezvous.

Map Construction
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explored graph

agent’s view

All accessible information is encoded in the first n levels of the agent’s view.

The simplest map:  the View

What can an agent learn about the network?

Constructing the view directly up to level n might require exponential time & memory…
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A question

Q5. For arbitrarily large n, show an example of an n-node labeled 
graph which contains two distinguished nodes u, v whose views are 
different, but identical up to as large a depth as possible.

(The best you can do is very close to n).
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Distinguishability of views

Note: it is possible that for a pair of nodes the view is identical up to 
depth more than their diameter, but different at some greater depth!

In fact, for distinguishability of views, it is sufficient to consider views 
up to depth O(diam * log n).  (Non-trivial) [Hendrickx’13]
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A more compact map:  the Quotient Graph

Assume that the agent starts at a node v in G.

Quotient graph (H, v’) of (G, v) : the (unique) smallest multigraph

such that node v’ in H has the same view as node v in G.

Theorem.  The quotient graph exists & encodes the view of v in G.
[Yamashita, Kameda ’96]

• If two graphs have identical quotient graphs, then no agent can tell
these two graphs apart.

• If two nodes of a graph have identical quotient graphs, then no 
agent can tell these two nodes apart.
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different network graphs & locations

same quotient graph

Distinguishing graphs: an example
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Results on map construction (anonymous model, with knowledge of n)

Theorem. There exists an agent with O(log n) memory which resolves the 
following queries in any anonymous network G:

• What is the number p of nodes of the quotient graph of G?

• What is the identifier v’ ∈ {1, ... , p} of the node of the quotient graph
corresponding to the node v of G at which the agent is currently located?

• Given two nodes of the quotient graph H with identifiers i, j ∈ {1, ... , p},
are they connected by an edge?

Proof relies on a variant of UXS.
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Results on map construction (anonymous model, with knowledge of n)

Theorem. There exists an agent with O(log n) memory which resolves the 
following queries in any anonymous network G:

• What is the number p of nodes of the quotient graph of G?

• What is the identifier v’ ∈ {1, ... , p} of the node of the quotient graph
corresponding to the node v of G at which the agent is currently located?

• Given two nodes of the quotient graph H with identifiers i, j ∈ {1, ... , p},
are they connected by an edge?

Proof relies on a variant of UXS.

Corollary. Any problem on a network G which can be formulated as a log-space 
Turing-decidable problem on the quotient graph of G, is decidable using a log-
space agent on G.

(given knowledge of an upper bound on n)
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Log-space computations with agents

Examples of problems decidable with log-space agents:
(given knowledge of an upper bound on n)

• Decide if G is a tree.

• Locate an edge of G whose removal does not disconnect G.

• Given a graph G in which nodes have distinct views, perform ”leader 
election” on the nodes of G.

Q6. Problem: Provide an example of a graph G which contains an edge e, such that 
e belongs to some cycle in G, whereas the edge corresponding to e in the quotient 
graph of G does not belong to any cycle (or loop) of this quotient graph.
Draw both graph G and its quotient graph.



The case of trees…
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Exploration of trees

• Perpetual exploration can be trivially achieved, in O(n) time and no memory.

• Termination of exploration requires W(log log log n) memory,
or W(log n) memory if the agent is required to stop at its starting location.

[Diks et al., 2004, Ambuhl et al. 2011]

Map construction & detecting if the network is a tree.

• For a tree, the quotient graph can be reconstructed in O(log n) memory, 
without knowledge of an upper bound on n.

Walking in tree networks
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Diffusive load balancing
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• We are given a network whose nodes represent machines
connected by communication links

• Tasks of fixed size arrive at the machines (in an adversarial scheduling)

• Machines use network links to spread out load over all network nodes

Objective: Minimize the number of communication rounds required
to spread out the load fairly over the network. 

Assumption:     communication time << task processing time

We think of the tasks as a form of token (or mobile agent).

Load balancing in a distributed system

Load balancing
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Inspirations: The Diffusion Equation

L / t =   ( L)

• L(x,y,z,t) is a scalar function (scalar field) – concentration of 
particles at points, temperature,…

•  is the diffusion coefficient

• For constant , we have uniform
linear diffusion (heat equation)

• First formulation for diffusing particles [Fick, 1855]

• -   L is the diffusion flux

62

Diffusion equation in Rk
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Inspirations: The Diffusion Equation

L / t =   ( L) =  DL

Next steps:

1. discretizing space: Rk -> graph with exchange between 
adjacent sites

2. we assume uniformity of diffusion coefficients on the sites 
of the graph

• e.g. on the path:  Lk / t =  (Lk+1 + Lk-1 - 2Lk) / 2

3. discretizing time

63

Uniform diffusion equation in Rk
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Inspirations: The Diffusion Equation

• Each of the nodes v of the graph starts with a certain amount 
of resource L0(v) (real-valued, non-negative) – call it load

• In each round, each of the nodes sends an equal part of its 
load to its neighbors

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)

64

Continuous Diffusion Model (in load balancing)
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Inspirations: The Diffusion Equation

• Each of the nodes v of the graph starts with a certain amount 
of resource L0(v) (real-valued, non-negative) – call it load

• In each round, each of the nodes sends an equal part of its 
load to its neighbors

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)
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Continuous Diffusion Model (in load balancing)

1
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Inspirations: The Diffusion Equation

• Each of the nodes v of the graph starts with a certain amount 
of resource L0(v) (real-valued, non-negative) – call it load

• In each round, each of the nodes sends an equal part of its 
load to its neighbors

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)
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Continuous Diffusion Model (in load balancing)

1/3 1/3 1/3
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Inspirations: The Diffusion Equation

• Each of the nodes v of the graph starts with a certain amount 
of resource L0(v) (real-valued, non-negative) – call it load

• In each round, each of the nodes sends an equal part of its 
load to its neighbors

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)
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Continuous Diffusion Model (in load balancing)

1/9 2/9 3/9 2/9 1/9 […]
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Analyzing continuous diffusion

• Continuous diffusion is a linear and deterministic (!) process:

Lt+1 = M Lt => Lt = Mt L0

where M is the stochastic matrix (”random walk matrix”) of the graph.

• Two easy-to-handle time parameters:

• After how many steps has some (non-zero) load reached
the most distant nodes of the graph? O(diam)

• After how many steps is load almost evenly spread
throughout the graph?  O(m-1 log (k n))

• m – eigenvalue gap of the graph

• k – total load (1-norm of L0; total number of chips)

68
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Analyzing continuous diffusion

• Continuous diffusion is a linear and deterministic (!) process:

Lt+1 = M Lt => Lt = Mt L0

where M is the stochastic matrix (”random walk matrix”) of the graph.

• Problem: dealing with granular load.(not infinitely divisable)

• Assume load is expressed in multiple of unit values, each of 
which is a chip propagated between neighboring nodes.

• We have k chips in total, each node v starting with L0(v) chips

• In general, it is no longer possible to follow the diffusion
equation accurately. 

• We discuss several discrete diffusion rules which
asymptotically converge to continous diffusion.

69
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Discrete diffusion rules

Reference point – continuous diffusion:

70

L(v)

L(v) / d

L(v) / d

L(v) / d

d = deg(v), for a while, we will be considering regular graphs.



Discrete diffusion rules

Rule 1: Independent random walk for each chip

71

L(v)

prob = 1 / d 

prob = 1 / d            (for each chip)

prob = 1 / d
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Discrete diffusion rules

Rule 1: Independent random walk for each chip
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L(v)

prob = 1 / d 

prob = 1 / d            (for each chip)

prob = 1 / d
• Pros:

• Expected number of chips at each location for the random
walk matches that in continuous diffusion:  E[Lt] = Mt E[L0]

• Cons:

• Unboundedly bad worst-case behavior.

Let’s look at some rules which do have worst-case guarantees…
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Discrete diffusion rules

Rule 2: Perform rounding of the continuous diffusion process

73

L(v)

L(v) / d or L(v) / d

L(v) / d or L(v) / d

L(v) / d or L(v) / d

(keeping sum
intact)
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Discrete diffusion rules

Rule 2: Perform rounding of the continuous diffusion process
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L(v)

L(v) / d or L(v) / d

L(v) / d or L(v) / d

L(v) / d or L(v) / d
• Pros:

• Load of each node off by O (d log n / m )  from continuous diffusion 
[Rabani et al., 1998]

• Extremely general. Can be made deterministic in many ways!

• Cons:

• Gap from continuous diffusion pretty big in general.

• Says nothing about the behavior, of e.g., 1 chip only.

(keeping sum
intact)
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Discrete diffusion rules

Rule 2a: Split chips evenly for multiples of the degree; 
remainder follows random walks [Sauerwald and Sun, 2012]

75

L(v)

L(v) / d

L(v) / d

L(v) / d

all remaining chips
+   pick a random

port with prob = 1/d
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Discrete diffusion rules

Rule 2a: Split chips evenly for multiples of the degree; 
remainder follows random walks [Sauerwald and Sun, 2012]
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L(v)

L(v) / d

L(v) / d

L(v) / d
• Pros:

• Expected number of chips at each location matches continuous diffusion

• At about the time when continuous diffusion has evened out, off by O(1)
from continuous diffusion in expectation [Sauerwald and Sun, 2012]

• Cons:

• Still no better worst-case guarantee than previously.

all remaining chips
+   pick a random

port with prob = 1/d
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Discrete diffusion rules

Rule 2b: emulate continuous diffusion explicitly
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L(v)

L(v) / d or L(v) / d

L(v) / d or L(v) / d

L(v) / d or L(v) / d

Rounding rules:
1) keep sums intact
2) try to create new loads

which are as close as 
possible to those in 
continuous diffusion
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Discrete diffusion rules

Rule 2b: emulate continuous diffusion explicitly
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L(v)

L(v) / d or L(v) / d

L(v) / d or L(v) / d

L(v) / d or L(v) / d
• Pros:

• Best possible simulation of continuous process: Load of each node
off by O (d)  deterministically w.r.t. continuous diffusion – in a slightly 
modified process which generates some extra artificial tokens and 
communication [Akbari et al. 2012]

• Cons:

• A lot of communication, computation, state memory at nodes,...

Rounding rules:
1) keep sums intact
2) try to create new loads

which are as close as 
possible to those in 
continuous diffusion
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Discrete diffusion rules

Rule 2c: Local fairness rules (our focus!)

79

L(v)

L(v) / d or L(v) / d

L(v) / d or L(v) / d

L(v) / d or L(v) / d

Rounding rule: release 
chips so that every arc 
outgoing from node v is 
used the same number of 
times (+/-1) up to time t
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Discrete diffusion rules

Rule 2c: Local fairness rules (our focus!), cumulative definition:

80

CL(v)

CL(v) / d or CL(v) / d

CL(v) / d or CL(v) / d

CL(v) / d or CL(v) / d

Define cumulative (integrated) load CL for nodes:

CLT (v) = ∑t ≤ T Lt (v)

(similar definition for arcs.)
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Discrete diffusion rules

Rule 2c: Local fairness rules (our focus!), cumulative definition:

81

Some features:

• Simple to implement, very little local state information required

• Admits refinements (including a stateless one!) which provide 
better bounds on discrepancy from continuous diffusion then 
the general bound for Rule 2.

• Admits a deterministic refinement which is particularly useful in 
graph exploration – the rotor-router model.

CL(v)

CL(v) / d or CL(v) / d

CL(v) / d or CL(v) / d

CL(v) / d or CL(v) / d



The rotor-router model
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• Anonymous undirected graphs / networks

• No node identifiers, no auxiliary labels

• Each node v has a fixed local port numbering from 1 to deg(v)

Rotor-Router Mechanism

The state of each node v is a pointer p(v) {1, …, deg(v)}.

For each chip located at node v
at the start of time round t:

• The chip is pushed to the neighbor
along port p(v)

• Pointer p(v) is incremented
modulo the degree.

The rotor-router model
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• Anonymous undirected graphs / networks

• No node identifiers, no auxiliary labels

• Each node v has a fixed local port numbering from 1 to deg(v)

Rotor-Router Mechanism

The state of each node v is a pointer p(v) {1, …, deg(v)}.

For each chip located at node v
at the start of time round t:
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The rotor-router model
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• Anonymous undirected graphs / networks

• No node identifiers, no auxiliary labels

• Each node v has a fixed local port numbering from 1 to deg(v)

Rotor-Router Mechanism

The state of each node v is a pointer p(v) {1, …, deg(v)}.

For each chip located at node v
at the start of time round t:

• The chip is pushed to the neighbor
along port p(v)

• Pointer p(v) is incremented
modulo the degree.

The rotor-router model
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The rotor-router model: an example
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The rotor-router model: an example
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The rotor-router model: an example
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The rotor-router model: an example
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The rotor-router model: an example
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The rotor-router model: an example
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Discrepancy w.r.t. continuous diffusion

• Bounded by 2.29 for the line [Cooper, Doerr, Spencer and 
Tardos, 2006]

• Bounded by 7.8 for the grid [Doerr and Friedrich, 2007]

Some load-balancing results for the rotor-router
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Discrepancy w.r.t. continuous diffusion

• Bounded by 2.29 for the line [Cooper, Doerr, Spencer and 
Tardos, 2006]

• Bounded by 7.8 for the grid [Doerr and Friedrich, 2007]

• Bounded by O(d m-1 log n) [Rabani et al., 1998]

• We have recently obtained tighter bounds for d-regular
graphs, given enough self-loops [Berenbrink, Klasing, K.,

Mallmann-Trenn, Uznanski, to appear]

• These results can also be obtained for stateless processes similar to a 
rotor-router (without a pointer).

Some load-balancing results for the rotor-router
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Side questions for a small number of chips
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How many times is each node visited by a single chip, starting from the 
origin of an infinite grid? 

black – 100

80
60
40
20
white – 0

(after about 108 steps,
random port initialization)



Side questions for a small number of chips
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What is the probability that a node has been visited a given number of 
times, for uniformly random port initialization, during a fixed number
of steps of the walk?

black – 1

white – 0

(after about 106 steps,
prob. of 10 visits to a node,
averaging over
5000 Monte-Carlo samples)



• Cover time

• When will have each node of the graph been reached by some chip, 
for a worst-case starting configuration?

• Same as maximum hitting time (for a deterministic process)

• Lock-in time

• The rotor-router is a deterministic process with a finite number of 
states, hence it must stabilize to a periodic traversal of some cycle in 
its state space after some initialization phase

• After what time does the rotor-router enter its limit cycle?

• Cycle length

• What is the length of the limit cycle of the rotor-router system?

Exploration-related parameters of the rotor-router
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Theorem [Yanovski et al., 2001]:

• For any graph with diameter diam and m edges, cover time
and lock-in time are bounded by O(m diam).

• After this lock-in period, the rotor-router stabilizes to an
Eulerian traversal of the directed version of the graph
(traversing each edge once in each direction).

Theorem [Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, K. 2009]:

• For any graph with diameter diam and m edges, there exists an
initial configuration of the rotor-router for which cover time
and lock-in time are (m diam).

Exploration with the rotor-router for 1 chip
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The rotor-router with 1 chip exhibits elegant structural properties.



Proof intuition (Eulerian lock-in)
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The walker visits successively larger Eulerian subgraphs of G.

Initial configuration:



Proof intuition (Eulerian lock-in)
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The walker visits successively larger Eulerian subgraphs of G.

After the pointer at the starting node has made ”one full turn”:



Proof intuition (Eulerian lock-in)
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The walker visits successively larger Eulerian subgraphs of G.

After the pointer at the starting node has made ”one full turn”:

G1



Proof intuition (Eulerian lock-in)
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The walker visits successively larger Eulerian subgraphs of G.

After the pointer at the starting node has made ”two full turns”:

G1

G2



Proof intuition (Eulerian lock-in)

104Adrian Kosowski                                                     Walks on Graphs: Exploration and Diffusion

The walker visits successively larger Eulerian subgraphs of G.

After the pointer at the starting node has made ”two full turns”:

After every full turn of the pointer at the starting location,
the walker has traversed all of the arcs of its previous Eulerian
subgraph (and new arcs ”one level deeper”).

G1

G2



Proof intuition (Eulerian lock-in)
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The walker visits successively larger Eulerian subgraphs of G.

After the pointer at the starting node has made ”two full turns”:

Stabilization is completed after O(diam) stages G1, G2,…,
each requiring O(m) time.

G1

G2 G3 = G



• Observation [Uznanski and Das, personal communication, 2014]:

There exist configurations with k = O(n) chips having
exponential period, but the lock-in time is always polynomial.

• This says nothing about the cover time (which is of course
still polynomial in n).

• The period of the system is always a multiple of 2m/k.

• Experimental evidence suggests that for randomly sampled
instances, the period seems to be not more than 2m  a.s. 
[Yanovski et al. 2001]

Exploration with the rotor-router for k chips
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The rotor-router with k>1 chips exhibits
more complex structural properties



• Recall the continuous diffusion equation:

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)

• The rotor-router satisfies it up to rounding:

L’t+1(v) = ∑u N(v)  L’t (u) / deg(u)    +/- O(1)

Exploration with the rotor-router for k chips
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We can make use of diffusive properties of the rotor-router



• Recall the continuous diffusion equation:

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)

• The rotor-router satisfies it up to rounding:

L’t+1(v) = ∑u N(v)  L’t (u) / deg(u)    +/- O(1)

… not strong enough.

Exploration with the rotor-router for k chips
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We can make use of diffusive properties of the rotor-router



• Recall the continuous diffusion equation:

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)

• Recall the definition of cumulative load
(=total number of visits up to time T):

CLT (v) = ∑t ≤ T Lt (v)

• Summing the diffusion equation over time, we obtain:

CLT+1(v) = CL0(v) + ∑u N(v)  CLt (u) / deg(u)

Exploration with the rotor-router for k chips
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We can make use of diffusive properties of the rotor-router



• Recall the continuous diffusion equation:

Lt+1(v) = ∑u N(v)  Lt (u) / deg(u)

• Recall the definition of cumulative load
(=total number of visits up to time T):

CLT (v) = ∑t ≤ T Lt (v)

• Summing the diffusion equation over time, we obtain:

CLT+1(v) = CL0(v) + ∑u N(v)  CLt (u) / deg(u)

• The rotor-router satisfies this up to rounding:

CL’T+1(v) = CL’0(v) + ∑u N(v)  (CL’t (u) +port(u,v)) / deg(u)

Exploration with the rotor-router for k chips
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We can make use of diffusive properties of the rotor-router



• Monotonicity property: [Yanovski et al., 2001]

Adding a new walker cannot increase cover time.

• Stronger monotonicity property: [Klasing, K., Pajak, Sauerwald, 2013]

• Delaying a walker for any number of rounds (”holding it
down with your finger at a node”) cannot decrease cover
time.

• Concept of a delayed deployment D, obtained from a rotor-
router initialization by defining how many walkers to delay
at which times and at which nodes.

Exploration with the rotor-router for k chips
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Corollaries:



[Klasing, K., Pajak, Sauerwald, 2013]

• Let R[k] be a k-walker rotor router system with an arbitrarily 
chosen initialization.

• Let D be any delayed deployment of R[k].

• Suppose that:

• Deployment D covers all the vertices of the graph after T 
rounds.

• In at least t of these rounds, all walkers were active in D.

Lemma: The cover time C(R[k]) of the system can be bounded by:

t ≤ C(R[k]) ≤ T

Exploration with the rotor-router for k chips
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The Slow-down Lemma
(a tool for proving upper bounds and lower bounds on cover time)



Exploration with the rotor-router for k chips
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How to use the slow-down lemma when analyzing cover times?

• We can analyse the cover time of R[k] by constructing some 
easy to analyse delayed deployment D.

• This allows us to think of the rotor-router as an algorithm, 
rather than a process which is imposed upon us.

• If the deployment D is defined so that agents in D are delayed in 
at most a constant proportion of the first C(D) rounds then the 
above inequalities lead to an asymptotic bound on the value of 
the undelayed rotor-router:  C(R[k]) = (C(D)).



The k chip rotor-router on the path/ring
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Case study: the rotor-router on the path (or ring) for k << n

• Intuition: Each walker occupies a ”domain”, which it patrols.

• A node v belongs to domain Vi (t) of the i-th walker if this walker
was the last agent visiting node v until round t, inclusive.

• A special domain V0(t) contains all nodes which have not yet
been visited.

• One can show that domains either form spontaneously as 
segments, or by holding back a few walkers we can force them
to form (delayed deployment). [Klasing, K., Pajak, Sauerwald, 2013]

• Within a domain, all ports are aligned ”towards” the walker
which is its owner.



The k chip rotor-router on the path/ring
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Example on the line, k=2 (starting from some moment…)



The k chip rotor-router on the path/ring
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Example on the line, k=2 (starting from some moment…)



The k chip rotor-router on the path/ring
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Example on the line, k=2 (starting from some moment…)



The k chip rotor-router on the path/ring
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Example on the line, k=2 (starting from some moment…)



The k chip rotor-router on the path/ring
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Example on the line, k=2 (starting from some moment…)



The k chip rotor-router on the path/ring
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Case study: the rotor-router on the path (or ring) for k << n

• Roughly speaking, each walker i enlarges its own domain
of size ni(t)= |Vi(t)| once every ni(t) steps
(once at the left end, once at the right end)

• At each of the ends, the size of the domain is reduced by the 
adjacent agent (except from the side with V0(t), if applicable).

• We obtain the following continuous-time approximation:

• This approximation is accurate in the sense that one can
construct a delayed deployment which (almost) adheres to its
solution.



The k chip rotor-router on the path/ring
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Theorem. Cover time of the rotor-router on the path [Klasing, K., Pajak, Sauerwald, 2013]

In the case when all walkers are initially placed at the same node v
with all pointers are initialized along the shortest path to v,
the k-walker rotor-router explores the path/ring of size n
in time (n2 / log k) when k < n1/11.



The k chip rotor-router in general graphs
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What happens for general graphs?

• Even less structure – forget about domains.

• Slowdown lemma still holds and proves useful.

• One can extract some additional properties from the cumulutive
load equation

Theorem. Cover time of the k-walker rotor-router
[Dereniowski, K., Pajak, Uznanski, 2014]

The k-walker rotor-router covers any graph n in worst-case time
O(m diam / log k) and W(m diam / k), whenever k is polynomial in n.

Both of these bounds are achieved for some graph classes.
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1 walker versus k walkers: comparison of speed-up

(all results hold up to k polynomially large with respect to n)

Examples:

Worst-case graph (logarithmic speed-up): path, cycle

Best-case graph (linear speed-up): star, clique

Different behavior for the rotor-router and r.w. 2D grid



• Blanket time (for small k)
After what time T will each node of the graph been visited by a similar 
number of chips up to time T (in total)?

• Rougly like the cover time for 1 chip.

• No visible speed-up with more chips for some graphs.

• Discrepancy w.r.t. continuous diffusion (only for large k)
What is the maximum difference between the number of chips per node in 
the considered process and in continuous diffusion?
(possibly starting from some moment of time)

• Diffusion time (only for large k)
After what time t will the discrepancy between the deterministic process 
and continuous diffusion be bounded?

Load balancing parameters of the rotor-router
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Research directions

Adrian Kosowski                                                Walks on Graphs: Exploration and Diffusion 126



• Exploring trade-offs between time, memory, knowledge, and 
randomness.

• Understanding randomness as an agent resource

• What adversaries can you fool with pseudorandomness?

• Can a limited-entropy source help fool an adversary?

• ”Massively parallel computations” with mobile agents

 Can other problems (apart from load balancing) be approached using 
agent-based techniques?

• Modeling biological agents

• Behavior of immunological cells as a search problem with advice.

Some research directions we are exploring
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Questions for tonight
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Some questions

A. Consider the subdivided star graph on n = 2k + 1 nodes.

• Estimate (up to multiplicative constants) the cover time
of the simple random walk on this graph. 

• Estimate (up to multiplicative constants) the cover time
of the Metropolis walk on this graph. 

B. For arbitrarily large n, show an example of an n-node labeled graph which 
contains two distinguished nodes u, v whose views are different, but identical 
up to as large a depth as possible.

(The best you can do is very close to n).

C. Suppose that a load balancing strategy satisfies the ”rounding bound” 
(node v always sends L(v) / d or L(v) / d to each neighbor). 
Give a tight upper bound on the value of:

lim t ->  (max v  V L(v)  - min v  V L(v))
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Thank you!


