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Why limits?

• asymptotic properties of large (discrete) objects

we implicitly use limits in our considerations anyway

• How does the seq. 1, 3, . . . , 2n− 1, 2, 4, . . . , 2n look like?

How does the adjacency matrix of Kn,n look like?

How does the adjacency matrix of Kn,n+1 look like?

• convergence of a sequence of discrete objects vs.

formal analytic representation of its limit

1
1
0

0
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Overview of the talk

• Limits of dense structures

Survey of main results in the area

Limits of permutations and dense graphs

• The flag algebra method

Applications in extremal combinatorics

• Limits of sparse structures

Various concepts, less understood
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Permutations

• permutation of order n: order on numbers 1, . . . , n

subpermutation: 453216 −→ 213

• density of a permutation π in a permutation Π:

d(π,Π) =
# subpermutations of Π that are π

# all subpermutations of order π

• (Πj)j∈N convergent if ∃ lim
j→∞

d(π,Πj) for every π
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Representation of a limit

• probability measure µ on [0, 1]2 with unit marginals

µ([a, b]× [0, 1]) = µ([0, 1] × [a, b]) = b− a

Hoppen, Kohayakawa, Moreira, Ráth and Sampaio

similar ideas in work of Presutti and Stromquist

• µ-random permutation

choose n random points, x- and y-coordinates
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Existence and uniqueness

• existence: associate Πj with a measure µj

observe |d(π,Πj)− d(π, µj)| ≤ O(|π|2 · |Πj |
−1)

set µ(A) := lim
j→∞

µj(A) for A ⊆ [0, 1]2

• uniqueness: µ(A) = lim
n→∞

E
|{m,[ m

2n , am
2n ]∈A}|

2n

where a1, . . . , a2n is µ-random and A ⊆ [0, 1]2

∀ π d(π, µ) = d(π, µ′) =⇒ µ = µ′

6



Application: quasirandomness

• property P (k) of a sequence (Πj)j∈N:

d(π,Πj) → 1/k! for every π ∈ Sk

• Question (Graham): Is there k0 such ∀k P (k0) ⇒ P (k)?

• Theorem (K., Pikhurko): yes, k0 = 4; best possible

density of 123 is 1/8 in the left and 1/4 in the middle

a µ-random permutation based on the right measure
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Proof P (5) ⇒ quasirandomness

• relate integrals and permutation densities
∫

x dxdy = d(12,µ)+d(21,µ)
2 = 1

2 =
∫

x dx

prob. x2 ≤ x1 for two random points [x1, y1] and [x2, y2]

(x, y)

F (x, y)

∫

F (x, y) = =
123 123 1 23
1 23 12 3 12 3
123 123 123

∫

F (x, y) dxdy = d(123)+d(132)+d(213)
3 + d(231)+d(312)+d(321)

6

1
81 =

(∫

F (x, y)xy dxdy
)2

≤ 1
9

∫

F (x, y)2dxdy = 1
81
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Questions?
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Dense graph convergence

• Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi

• convergence for dense graphs (|E| = Ω(|V |2))

• d(H,G) = probability |H |-vertex subgraph of G is H

• a sequence (Gn)n∈N of graphs is L-convergent

if d(H,Gn) converges for every H

• extendable to other discrete structures
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Limit object: graphon

• graphon W : [0, 1]2 → [0, 1], s.t. W (x, y) = W (y, x)

• W -random graph of order n

random points xi ∈ [0, 1], edge probability W (xi, xj)

• d(H,W ) = prob. |H |-vertex W -random graph is H

• W is a limit of (Gn)n∈N if d(H,W ) = lim
n→∞

d(H,Gn)
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Limit object: graphon

• graphon W : [0, 1]2 → [0, 1], s.t. W (x, y) = W (y, x)

• W -random graph of order n

random points xi ∈ [0, 1], edge probability W (xi, xj)

• d(H,W ) = prob. |H |-vertex W -random graph is H

• W is a limit of (Gn)n∈N if d(H,W ) = lim
n→∞

d(H,Gn)

• every L-convergent sequence of graphs has a limit

• W -random graphs converge to W with probability one
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W -random graphs

• the density of a graph H in a graphon W :

|H |!

|Aut(H)|

∫

[0,1]|H|

∏

vivj

W (xi, xj)
∏

vivj

(1−W (xi, xj)) dx1 · · · xn

• a sequence (Gn)n∈N of W -random graphs, |Gn| = n

the expectation of d(H,Gn) conditioned on x1, . . . , xi

Azuma’s ineq.: P[|d(H,Gn)− d(H,W )| ≥ ε] ≤ e−O(ε2·n)

Borel-Cantelli ⇒ (Gn)n∈N converges with prob. one

13



Construction of the limit

• sequence of mutually refining regularity partitions

removal lemma ⇒ subgraph counts

• interpret the partitions as functions [0, 1]2 → [0, 1]

the pointwise limit is the sought graphon

existence by martingale convergence
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Uniqueness of the limit

• Wϕ(x, y) := W (ϕ(x), ϕ(y)) for ϕ : [0, 1] → [0, 1]

• d(H,W ) = d(H,Wϕ) if ϕ is measure preserving

• Theorem (Borgs, Chayes, Lovász)

If d(H,W1) = d(H,W2) for all graphs H ,

then there exist measure preserving maps ϕ1 and ϕ2

such that Wϕ1

1 = Wϕ2

2 almost everywhere.
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Space of typical vertices

• vertices of a graphon W : its rows fx(y) := W (x, y)

R(W ) = {f ∈ L1[0, 1] | ∃x f = fx}

R(W ) is naturally equipped with measure µ

• typical vertices T (W ) = the support of µ in L1[0, 1]

topology can be given by L1 or by similarity distance

dW (f, f ′) = Egx

∣

∣

∣

∫

y
(f(y)− f ′(y))gx(y)

∣

∣

∣
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Weak regularity partitions

• Frieze and Kannan (1999)

an ε-regular partition of a graph G is V1, . . . , Vk

∣

∣

∣

∣

∣

∣

e(S, T )−
∑

i,j

dij · |S ∩ Vi| · |T ∩ Vj |

∣

∣

∣

∣

∣

∣

≤ ε

• ∃ ε-regular partitions with k parts ⇔

∃ cover of typical vertices with k ε-balls except for ε

• finite dimension ⇒ polynomial weak regularity partition
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Finitely forcible graphons

• a graphon W is finitely forcible if there exist

H1, . . . ,Hk and d1, . . . , dk such that W is the only

graphon with the expected density of Hi equal to di

• ⇔ the only graphon minimizing
∑

αjd(H
′
j ,W )

• Lovász and Sós (2008),

Every step function is finitely forcible.
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Finitely forcible graphons

• Conjecture (Lovász and Szegedy):

Every extremal problem min
∑

αjd(Hj ,W )

has a finitely forcible optimal solution.

• extremal graph theory problem →

finitely forcible optimal solution →

simple structure gives new bounds on old problems

(bounded dimension, few kinds of typical vertices)
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Finitely forcible graphons

• Conjectures (Lovász and Szegedy):

The space T (W ) of a finitely forcible W is compact.

The space T (W ) has finite dimension.

• Theorem (Glebov, K., Volec):

T (W ) can fail to be locally compact

• Theorem (Glebov, Klimošová, K.):

T (W ) can have a part homeomorphic to [0, 1]∞

• Theorem (Cooper, Kaiser, K., Noel):

∃ finitely forcible W such that every ε-regular partition

has at least 2ε
−2/ log log ε−1

parts.
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Parameter testing

• graph parameter P : graphs → R

• large input data, not possible to process

providing an estimate based on a small sample

• P is testable if there exists a randomized algorithm that

estimates the parameter P within the additive error ε

based on a sample of size f(ε) with probability ≥ 1− ε

• P is testable ⇔ P is continuous on the graphon space
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Questions?
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Overview of the talk

• Limits of dense structures

Survey of main results in the area

Limits of permutations and dense graphs

• The flag algebra method

Applications in extremal combinatorics

• Limits of sparse structures

Various concepts, less understood
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Flag algebras: homomorphisms

• algebra A on formal linear combinations of graphs

addition and multiplication by a scalar

• if W is a graphon, define f(
∑

αiHi) :=
∑

αid(Hi,W )

the function f is a homomorphism from A to R

we define multiplication in A on the next slide

• Ker(f) always contains certain elements

e.g. K2 −
1
3K1,2 −

2
3K1,2 −

3
3K3

f(K2) =
1
3f(K1,2) +

2
3f(K1,2) +

3
3f(K3)
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Flag algebras: multiplication

• picking two pairs of vertices ≈ picking a quadruple

assuming the considered graph G is huge

• d(K2, G)×d(K2, G) = 1
3d(K2∪K2, G)+ 1

3d(P4, G)+ · · ·

• this leads to a definition of a product of two graphs

× = 1
3 + 1

3 + 2
3 + 1

3 + 2
3 +1

• If W is the unique graphon with d(Hi,W ) = αi,
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it is the unique graphon with
∑

i

(d(Hi,W )− αi)
2 = 0.

∑

i

(Hi − αiK1)
2 =

∑

j

βjH
′
j
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Rooted homomorphisms

• consider a graph G with a distinguish vertex (root)

a random sample always includes the root

• algebra A• on combinations of rooted graphs

• rooted graph → a homomorphism from A• to R

random choice of the root → probability distribution

on homomorphisms f• from A• to R

f•(K•
2 ) = 1/2, f•(K•

2 ) = 1/2, f•(K•
3 ) = 0, . . .

f•(K•
2 ) = 1, f•(K•

2 ) = 0, f•(K•
3 ) = 3/4, . . .
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Averaging operator

• goal: f(JxK•) = E•f
•(x) for x ∈ A•

= 1
3

•
= 2

3
•

• expressing degree constraints:

f(
q
(K•

2 − 1/3)2(K•
2 − 2/3)2

y
•
) = 0

• if A is PSD n× n-matrix and x ∈ An, f(xTAx) ≥ 0

example: f((αK2 − βK2)
2) = f(

∑

αiHi) ≥ 0

analogously for vectors x with entries from A•

• search for such inequalities can be computer assisted
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Flag algebras: example

× = + × = 1
2

+ 1
2

× = +

−

2

•
= 3

3
− 1

3
− 1

3
+ 3

3 ≥ 0

1
3

+ 1
3

+ 1
3

+ 1
3 = 1

3

+ + ≥ 1
4
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Quasirandomness of graphs

• Theorem (Thomason):

dhom(H,G) = d(H,Gn,p) for H = K2, C4 ⇒ G ≈ Gn,p

• d(H,W ) = d(H,Wp) for all 4-vertex H ⇒ W = Wp

∀ x :
∫

W (x, y) dy = p ⇐⇒
q
(K•

2 − p)2
y
•
= 0

∀ x, x′ :
∫

W (x, y)W (x′, y) dy = p2

⇐⇒
q
(K••

3 +K••
1,2 − p2)2

y
••

= 0

=⇒ ∀ x :
∫

W (x, y)2 dy = p2

∀ x :
∫

W (x, y) dy = p ∧
∫

W (x, y)2 dy = p2

=⇒ ∀ x, y : W (x, y) = p
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Questions?
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Sparse graph convergence

• convergence of graphs with bounded degree

trivially converging to the zero graphon

• need of a different notion of convergence

several notions, each having some cons

• absence of understood analytic representation

Aldous and Lyons Conjecture, relation to group theory

Does every graphing has a sequence converging to it?
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Left convergence

• introduced by Benjamini and Schramm in 2001

• bounded number of types of d-neighborhoods

convergence of statistic of d-neighborhoods

• cons: connected vs. disconnected

bipartite vs. non-bipartite graphs

33



Local-global convergence

• introduced by Hatami, Lovász and Szegedy in 2012

• types of d-neighborhoods k-vertex-colored graphs

convergence of statistic of such d-neighborhoods

attainable by a k-vertex-coloring of graphs

• (Gi)i∈N → (Ai)i∈N where Ai ⊆ R
K and K is # of types

∀ε > 0 ∃ n ∀ i, j > n, x ∈ Ai ∃y ∈ Aj ||x− y|| ≤ ε

• almost bipartite vs. non-bipartite graphs

local-global convergence ⇒ left convergence
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Graphings

• graphing G is a graph with V (G) = [0, 1]

bounded maximum degree, Borel measurable edge-set

mass preservation:
∫

A
degB(x) dx =

∫

B
degA(y) dy

• Theorem (Elek, 2007)

Every BS-convergent sequence has a graphing.

Theorem (Hatami, Lovász, Szegedy, 2012)

Every LG-convergent sequence has a graphing.

• Conjecture (Aldous, Lyons)

Every graphing is a BS-limit of a graph sequence.
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Right convergence

• developed by Borgs, Chayes, Kahn and Lovász in 2013

lim
i→∞

log hom(Gi,H)

|Gi|

hom(G,H) =
∑

f :G→H

∏

v∈V

w(f(v))
∏

vv′∈E

w(f(v)f(v′))

• cons: connected vs. disconnected
log hom(G,H)

|G| = log hom(G∪G,H)
|G∪G|
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Right ⇒ left convergence

• complex proof by Borgs, Chayes, Kahn and Lovász

• use LLL to count hom(G,Hk) for Hk = Kk \K2

if p ≤ xi

∏

j∼i

(1− xj), then ≥
∏

i

(1− xi)

p = 2
k2 ≤ ( 2

k2 + c
k4 )(1−

2
k2 − c

k4 )
2∆

hom(G,Hk) ≥ k|G| · (1− 2
k2 − c

k4 )
|E(G)|

• upper bound given by Suen’s inequality

hom(G,Hk) ≤ k|G| · e
2|E(G)|∆

k3 (1− 2
k2 )

|E(G)|

• log hom(G,Hk)
|G| = k − |E(G)|

|G|·k2 +O
(

∆2

k3

)
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Partition convergence

• introduced by Bollobás and Riordan in 2011

• statistic of a k-partition: (a1, . . . , ak, d11, d12, . . . , dkk)

convergence of attainable statistic of k-partitions

• n× C4 vs. n× C6: same attainable statistic

if k = 2: a1 + a2 = 1, a1 = d11 + d12/2, a2 = d22 + d12/2
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Large deviation convergence

• introduced by Borgs, Chayes and Gamarnik in 2013

• counting k-partitions with a statistic x ∈ R
k+(k+1

2 )

r(x) = lim
ε→0

lim
i→∞

−
log

# k-partitions ε-close to x
k|Gi|

|Gi|

possible values: [0, log k] ∪ {∞}

number of k-partitions with statistic x ≈ k|G| · e−r(x)|G|

• ⇒ partition convergence (the limit is finite)

⇒ right convergence (weighted partitions)
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Large deviation ⇒ right converg.

• hom(G,H) =
∑

f :G→H

∏

v∈V

w(f(v))
∏

vv′∈E

w(f(v)f(v′))

• if k = |H |, determined by the statistic x ∈ R
k+(k+1

2 )

≈
∑

x
k|G|e−r(x)|G|

∏

vi

w(vi)
xi|G|

∏

vivj

w(vivj)
xij |G|

• What is lim
i→∞

log hom(Gi,H)
|Gi|

?

sup
x

log k − r(x) +
∑

vi

xi logw(vi) +
∑

vivj

xixj logw(vivj)

convergence of r(x) ⇒ right convergence
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Mutual relations

Left

B-S

Large

deviation

Local-

global

Right

Partition
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Questions?
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Exercises

• Compute the density of 123 in the permutons below.

• Describe the limit of Kn/3 ∪K2n/3 and show that

it is finitely forcible.

• Show that every BS-converegent sequence of

2-regular graphs has a graphing.
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