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WHY LIMITS?

e asymptotic properties of large (discrete) objects

we implicitly use limits in our considerations anyway

e How does the seq. 1,3,....,2n—1,2,4,...,2n look like?
How does the adjacency matrix of K, ,, look like?

How does the adjacency matrix of K, ,4+1 look like?

e convergence of a sequence of discrete objects vs.

formal analytic representation of its limit
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OVERVIEW OF THE TALK

e Limits of dense structures
Survey of main results in the area

Limits of permutations and dense graphs

e The flag algebra method

Applications in extremal combinatorics

e Limits of sparse structures

Various concepts, less understood




PERMUTATIONS

e permutation of order n: order on numbers 1,...,n
subpermutation: 453216 — 213

e density of a permutation 7 in a permutation II:

d(.TI) = # subpermutations of II that are =«

# all subpermutations of order w

o (II;),;en convergent if Eljlirgo d(m,11;) for every m




REPRESENTATION OF A LIMIT

e probability measure p on [0,1]? with unit marginals
p(la, b] < [0,1]) = u([0, 1] x [a,b]) =b —a
Hoppen, Kohayakawa, Moreira, Rath and Sampaio

similar ideas in work of Presutti and Stromquist

e /-random permutation

choose n random points, z- and y-coordinates




EXISTENCE AND UNIQUENESS

e cxistence: assoclate 1I; with a measure p;
observe !d( A1) = d( )| < 0(!7?!2 11| ~1)
set (A hm ,uj ) for A C [0, 1]?

L{ELLZ

e uniqueness: u(A) = lim | mslo SR [€A}]

mn

n—oo E
where aq,...,asn is p-random and A C [0, 1]

Vrodimp =dmu) = pw=u




APPLICATION: QUASIRANDOMNESS

e property P(k) of a sequence (II;),en:
d(m,11;) — 1/k! for every m € S,

e Question (Graham): Is there kg such Vk P(ky) = P(k)?

e Theorem (K., Pikhurko): yes, kg = 4; best possible
density of 123 is 1/8 in the left and 1/4 in the middle

a p-random permutation based on the right measure
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PROOF P(5) = QUASIRANDOMNESS

e relate integrals and permutation densities
f«fC dzdy = d(12,u);d(21,u) _ % _ fflf dor
prob. o < x1 for two random points [z1,y;]| and [z2, ys]

:

! 123 123 132
[ F(x,y) = ' = 132 213 213
231 312 321

(
[
M )
[
1

fF(a:,y) dzdy = d(123)+d(1332)—|—d(213) i d(231)+d(3612)+d(321)

8% = (f F(x,y)xy d:z:dy)2




(Questions?



DENSE GRAPH CONVERGENCE

e Borgs, Chayes, Lovasz, Sos, Szegedy and Vesztergombi

e convergence for dense graphs (|E| = Q(|V|?))

e d(H,G) = probability |H|-vertex subgraph of G is H

e a sequence (G, )nen of graphs is L-convergent

if d(H,G,,) converges for every H

e cxtendable to other discrete structures

10



GRAPHON

LIMIT OBJECT

e graphon W :[0,1]* — [0,1], s.t. W(z,y) = W(y, x)

e W-random graph of order n
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e d(H,W) = prob. |H|-vertex W-random graph is H

e IV is a limit of (G,,)

) (
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LIMIT OBJECT: GRAPHON

graphon W :[0,1]* — [0,1], s.t. W(x,y) = W (y,x)

W-random graph of order n

random points z; € [0, 1|, edge probability W (z;, z;)

d(H,W) = prob. |H|-vertex W-random graph is H

W is a limit of (G, )nen if d(H, W) = lim d(H,G,)
n—oo

every L-convergent sequence of graphs has a limit

W-random graphs converge to W with probability one
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W-RANDOM GRAPHS

e the density of a graph H in a graphon W':

H|!
’AU.t / H W xzaxj H(l—W(fz,ZCJ)) dgjl c e Ty

[O 1)1 ViV Iy

e a sequence (G )neny of W-random graphs, |G, | =n

the expectation of d(H, G, ) conditioned on x1,...,x;
Azuma’s ineq.: P[|d(H,G,) — d(H,W)| > ¢] < e=©"m)
Borel-Cantelli = (G,,),en converges with prob. one
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CONSTRUCTION OF THE LIMIT

e sequence of mutually refining regularity partitions

removal lemma = subgraph counts

e interpret the partitions as functions [0, 1]* — [0, 1]

the pointwise limit is the sought graphon

existence by martingale convergence

4 4 4 4
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UNIQUENESS OF THE LIMIT

o W¥(z,y) :=W(p(x),¢(y)) for ¢ :[0,1] = [0,1]
e d(H,W) =d(H,W?¥) if © is measure preserving

e Theorem (Borgs, Chayes, Lovasz)
If d(H,Wy) = d(H,W5) for all graphs H,
then there exist measure preserving maps ¢ and -
such that W' = W5? almost everywhere.

dddddd
44
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SPACE OF TYPICAL VERTICES

e vertices of a graphon W: its rows f,(y) := W (x,y)

RW)=A{f € L0,1] | dx f = f.}
R(W) is naturally equipped with measure p

e typical vertices T'(W) = the support of u in L]0, 1]
topology can be given by L1 or by similarity distance

Wl J) =By, |[,(F@) = 1 (9)9:(v)]

L S BN
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WEAK REGULARITY PARTITIONS

e Frieze and Kannan (1999)
an e-regular partition of a graph G is Vp,...,V,

e(S,T) =Y dij-[SNV;|- [T NV

2V}

e 1 e-regular partitions with k parts &

3 cover of typical vertices with k e-balls except for ¢

e finite dimension = polynomial weak regularity partition
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FINITELY FORCIBLE GRAPHONS

e a graphon W is finitely forcible if there exist
Hq,...,H; and dq,...,d; such that W is the only
graphon with the expected density of H; equal to d;

e < the only graphon minimizing ) a;d(H’, W)

e Lovasz and Sés (2008),
Every step function is finitely forcible.

o 4 4
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FINITELY FORCIBLE GRAPHONS

e Conjecture (Lovasz and Szegedy):
Every extremal problem min )  a;d(H;, W)

has a finitely forcible optimal solution.

e extremal graph theory problem —
finitely forcible optimal solution —

simple structure gives new bounds on old problems

(bounded dimension, few kinds of typical vertices)
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FINITELY FORCIBLE GRAPHONS

Conjectures (Lovész and Szegedy):
The space T (W) of a finitely forcible W is compact.
The space T'(W) has finite dimension.

Theorem (Glebov, K., Volec):
T'(W) can fail to be locally compact

Theorem (Glebov, Klimosové, K.):

T (W) can have a part homeomorphic to [0, 1]*°

Theorem (Cooper, Kaiser, K., Noel):
3 finitely forcible W such that every e-regular partition

has at least 2¢ /logloge™’ parts.
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PARAMETER TESTING

graph parameter P : graphs — R

large input data, not possible to process

providing an estimate based on a small sample

P is testable if there exists a randomized algorithm that

estimates the parameter P within the additive error ¢

based on a sample of size f(e) with probability > 1 — ¢

P is testable < P is continuous on the graphon space
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(Questions?
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OVERVIEW OF THE TALK

e Limits of dense structures
Survey of main results in the area

Limits of permutations and dense graphs

e The flag algebra method

Applications in extremal combinatorics

e Limits of sparse structures

Various concepts, less understood
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FLAG ALGEBRAS: HOMOMORPHISMS

algebra A on formal linear combinations of graphs

addition and multiplication by a scalar

if W is a graphon, define f(> «a;H;) := > a;d(H;, W)

the function f is a homomorphism from A to R

we define multiplication in A on the next slide

Ker(f) always contains certain elements
e.g Ko— sKip— 2K12— 5K;
f(K2) = 5f(Ki2)+ 5f(Kiz2)+ 5f(Ks)

24



FLAG ALGEBRAS: MULTIPLICATION

picking two pairs of vertices ~ picking a quadruple

assuming the considered graph G is huge

d(Ky, Q) x d(Ky,G) = Ld(Ks U K2, G) + 1d(Py, G) + - --

this leads to a definition of a product of two graphs

] L [T

If W is the unique graphon with d(H;, W) = ay,
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it is the unique graphon with Y (d(H;, W) — a;)? = 0.

> (H; — ;K1) Z B;H

)
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ROOTED HOMOMORPHISMS

e consider a graph G with a distinguish vertex (root)

a random sample always includes the root
e algebra A® on combinations of rooted graphs

e rooted graph — a homomorphism from A®* to R
random choice of the root — probability distribution

on homomorphisms f® from A°® to R

FOKS)=1/2, f*(K3)=1/2, f*(K$)=0, ...
fOKS) =1, f*(K3)=0, f*(K3)=3/4, ...




AVERAGING OPERATOR

goal: f([x],) = Eef®(x) for x € A®

AVAREAVARES 4

expressing degree constraints:

Fl(Ks = 1/32 (k3 —2/37],) = 0

if A is PSD n X n-matrix and z € A", f(ZCTAZC) > ()
example: f((aKy — fK2)%) = f(3_ aiH;) >0
analogously for vectors x with entries from A°

search for such inequalities can be computer assisted
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F1L.AG ALGEBRAS: EXAMPLE

ffvv S TEN TN

o Oo0——0O0 O O
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/s
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(QUASIRANDOMNESS OF GRAPHS

e Theorem (Thomason):
dhom(Hy G) = d(H, an”p) for H = KQ, 04 = G~ Gn,p

o d(H,W)=d(H,W,) for all 4-vertex H = W =W,
Va: [W(z,y) dy=p <= [(K3—p)?],6 =0

Va,o : [W(z,y)W(a', y) dy = p
— [(K5* + K% —p)?],, =0
— Va: [W(z,y)?*dy =p?

Va: [Wxy) dy=p A [W(z,y)* dy = p
— Vax,y: W(x,y)=p

30



(Questions?
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SPARSE GRAPH CONVERGENCE

e convergence of graphs with bounded degree

trivially converging to the zero graphon

e need of a different notion of convergence

several notions, each having some cons

e absence of understood analytic representation
Aldous and Lyons Conjecture, relation to group theory

Does every graphing has a sequence converging to it?
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LEFT CONVERGENCE

introduced by Benjamini and Schramm in 2001

bounded number of types of d-neighborhoods

convergence of statistic of d-neighborhoods

cons: connected vs. disconnected

bipartite vs. non-bipartite graphs

v v Y
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LLOCAL-GLOBAL CONVERGENCE

introduced by Hatami, Lovasz and Szegedy in 2012

types of d-neighborhoods k-vertex-colored graphs
convergence of statistic of such d-neighborhoods

attainable by a k-vertex-coloring of graphs

(Gy)ien — (A)ien where 4; C RE and K is # of types
Ve>03dnVi,j>naxed, JycA;|lr—y|| ¢

almost bipartite vs. non-bipartite graphs
local-global convergence = left convergence




(FRAPHINGS

e graphing G is a graph with V(G) = [0, 1]

bounded maximum degree, Borel measurable edge-set

mass preservation: [, degg(z) dz = [, deg,(y) dy

e Theorem (Elek, 2007)
Every BS-convergent sequence has a graphing.
Theorem (Hatami, Lovasz, Szegedy, 2012)

Every LG-convergent sequence has a graphing.

e Conjecture (Aldous, Lyons)
Every graphing is a BS-limit of a graph sequence.
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RIGHT CONVERGENCE

e developed by Borgs, Chayes, Kahn and Lovasz in 2013

lim loghom(G;, H)

hom(G,H) = [] w(f(v)) I w(f(v)f(v"))

f:G—HveV vv'el

e cons: connected vs. disconnected
loghom(G,H) _ loghom(GUG,H)
|G| o |GUG]
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RIGHT = LEFT CONVERGENCE

complex proof by Borgs, Chayes, Kahn and Lovasz

use LLL to count hom(G, Hy) for Hy, = K \ K>
if p<a; |](1—2x;), then > H(l — x;)

J~

p= < (@ +a)0-

hom(G, Hy) > k|G| (1 —

upper bound given by Suen’s inequality
2|E(G)|A

hom(G, Hy,) < k!¢l - e (1— 2)IE@)

log hom (G, Hy) _E(G)] A?
° [ \w2+0(w)




PARTITION CONVERGENCE

e introduced by Bollobas and Riordan in 2011

e statistic of a k-partition: (aq,...,ar,d11,d12,...,dkg)

convergence of attainable statistic of k-partitions

e n X (4 vs. n xCg: same attainable statistic
if £ = 2: a1+ as = 1, a1 — d11 —|—d12/2, a9 — d22—|—d12/2

BEEREREENORORORG
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[LARGE DEVIATION CONVERGENCE

e introduced by Borgs, Chayes and Gamarnik in 2013

. .. . . k+(k+1)
e counting k-partitions with a statistic z € R 2

log # k-partitions e-close to x

T . B kGl
rie) = o A G

possible values: [0, log k] U {0}

number of k-partitions with statistic z ~ k€l . ¢=7(@)IG]

e = partition convergence (the limit is finite)

= right convergence (weighted partitions)
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LLARGE DEVIATION = RIGHT CONVERG.

hom(G,H) = . [l w(f(v)) 1l w(f(v)f(v))

f:G—HveV vv'el

if k = |H|, determined by the statistic z € RF("27)

What is lim 28 hom (G, H)
500 |Gl

sup logk —r(x) + sz logw(v;) + > x;zjlogw(vv,)

ViV

convergence of r(x) = right convergence




MUTUAL RELATIONS
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(Questions?
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EXERCISES

e Compute the density of 123 in the permutons below.

e Describe the limit of K, /3 U K9, /3 and show that
it is finitely forcible.

e Show that every BS-converegent sequence of

2-regular graphs has a graphing.
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