Limits of discrete structures and their applications

Dan Král'

the vivinesity or WARWICK

Why Limits?

- asymptotic properties of large (discrete) objects we implicitly use limits in our considerations anyway
- How does the seq. $1,3, \ldots, 2 n-1,2,4, \ldots, 2 n$ look like? How does the adjacency matrix of $K_{n, n}$ look like? How does the adjacency matrix of $K_{n, n+1}$ look like?
- convergence of a sequence of discrete objects vs. formal analytic representation of its limit

$\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}$

Overview of the talk

- Limits of dense structures

Survey of main results in the area
Limits of permutations and dense graphs

- The flag algebra method

Applications in extremal combinatorics

- Limits of sparse structures

Various concepts, less understood

Permutations

- permutation of order n : order on numbers $1, \ldots, n$ subpermutation: 453216 $\longrightarrow 213$
- density of a permutation π in a permutation Π :

$$
d(\pi, \Pi)=\frac{\# \text { subpermutations of } \Pi \text { that are } \pi}{\# \text { all subpermutations of order } \pi}
$$

- $\left(\Pi_{j}\right)_{j \in \mathbb{N}}$ convergent if $\exists \lim _{j \rightarrow \infty} d\left(\pi, \Pi_{j}\right)$ for every π

Representation of a Limit

- probability measure μ on $[0,1]^{2}$ with unit marginals $\mu([a, b] \times[0,1])=\mu([0,1] \times[a, b])=b-a$
Hoppen, Kohayakawa, Moreira, Ráth and Sampaio similar ideas in work of Presutti and Stromquist
- μ-random permutation choose n random points, x - and y-coordinates

Existence and uniqueness

- existence: associate Π_{j} with a measure μ_{j} observe $\left|d\left(\pi, \Pi_{j}\right)-d\left(\pi, \mu_{j}\right)\right| \leq O\left(|\pi|^{2} \cdot\left|\Pi_{j}\right|^{-1}\right)$ set $\mu(A):=\lim _{j \rightarrow \infty} \mu_{j}(A)$ for $A \subseteq[0,1]^{2}$

- uniqueness: $\mu(A)=\lim _{n \rightarrow \infty} \mathbb{E} \frac{\left|\left\{m,\left[\frac{m}{2^{n}}, \frac{a_{m}}{2^{n}}\right] \in A\right\}\right|}{2^{n}}$ where $a_{1}, \ldots, a_{2^{n}}$ is μ-random and $A \subseteq[0,1]^{2}$ $\forall \pi d(\pi, \mu)=d\left(\pi, \mu^{\prime}\right) \Longrightarrow \mu=\mu^{\prime}$

Application: quasirandomness

- property $P(k)$ of a sequence $\left(\Pi_{j}\right)_{j \in \mathbb{N}}$: $d\left(\pi, \Pi_{j}\right) \rightarrow 1 / k$! for every $\pi \in S_{k}$
- Question (Graham): Is there k_{0} such $\forall k P\left(k_{0}\right) \Rightarrow P(k)$?
- Theorem (K., Pikhurko): yes, $k_{0}=4$; best possible density of 123 is $1 / 8$ in the left and $1 / 4$ in the middle a μ-random permutation based on the right measure

PRoof $P(5) \Rightarrow$ QUASIRANDOMNESS

- relate integrals and permutation densities
$\int x \mathrm{~d} x \mathrm{~d} y=\frac{d(12, \mu)+d(21, \mu)}{2}=\frac{1}{2}=\int x \mathrm{~d} x$ prob. $x_{2} \leq x_{1}$ for two random points $\left[x_{1}, y_{1}\right]$ and $\left[x_{2}, y_{2}\right]$

$$
\begin{aligned}
& \int F(x, y) \mathrm{d} x \mathrm{~d} y=\frac{d(123)+d(132)+d(213)}{3}+\frac{d(231)+d(312)+d(321)}{6} \\
& \frac{1}{81}=\left(\int F(x, y) x y \mathrm{~d} x \mathrm{~d} y\right)^{2} \leq \frac{1}{9} \int F(x, y)^{2} \mathrm{~d} x \mathrm{~d} y=\frac{1}{81}
\end{aligned}
$$

Questions?

Dense graph convergence

- Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi
- convergence for dense graphs $\left(|E|=\Omega\left(|V|^{2}\right)\right)$
- $d(H, G)=$ probability $|H|$-vertex subgraph of G is H
- a sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is L-convergent if $d\left(H, G_{n}\right)$ converges for every H
- extendable to other discrete structures

Limit object: GRAPhon

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n
random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$

Limit object: GRAPHON

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$
- every L-convergent sequence of graphs has a limit
- W-random graphs converge to W with probability one

W-RANDOM GRAPHS

- the density of a graph H in a graphon W :

$$
\frac{|H|!}{|\operatorname{Aut}(H)|} \int_{[0,1]^{|H|}} \prod_{v_{i} v_{j}} W\left(x_{i}, x_{j}\right) \prod_{\frac{v_{i} v_{j}}{}}\left(1-W\left(x_{i}, x_{j}\right)\right) \mathrm{d} x_{1} \cdots x_{n}
$$

- a sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of W-random graphs, $\left|G_{n}\right|=n$ the expectation of $d\left(H, G_{n}\right)$ conditioned on x_{1}, \ldots, x_{i} Azuma's ineq.: $\mathbb{P}\left[\left|d\left(H, G_{n}\right)-d(H, W)\right| \geq \varepsilon\right] \leq e^{-O\left(\varepsilon^{2} \cdot n\right)}$ Borel-Cantelli $\Rightarrow\left(G_{n}\right)_{n \in \mathbb{N}}$ converges with prob. one

Construction of The Limit

- sequence of mutually refining regularity partitions removal lemma \Rightarrow subgraph counts
- interpret the partitions as functions $[0,1]^{2} \rightarrow[0,1]$ the pointwise limit is the sought graphon existence by martingale convergence

Uniqueness of THE LIMIT

- $W^{\varphi}(x, y):=W(\varphi(x), \varphi(y))$ for $\varphi:[0,1] \rightarrow[0,1]$
- $d(H, W)=d\left(H, W^{\varphi}\right)$ if φ is measure preserving
- Theorem (Borgs, Chayes, Lovász)

If $d\left(H, W_{1}\right)=d\left(H, W_{2}\right)$ for all graphs H,
then there exist measure preserving maps φ_{1} and φ_{2} such that $W_{1}^{\varphi_{1}}=W_{2}^{\varphi_{2}}$ almost everywhere.

Space of Typical vertices

- vertices of a graphon W : its rows $f_{x}(y):=W(x, y)$ $R(W)=\left\{f \in L_{1}[0,1] \mid \exists x f=f_{x}\right\}$
$R(W)$ is naturally equipped with measure μ
- typical vertices $T(W)=$ the support of μ in $L_{1}[0,1]$ topology can be given by L_{1} or by similarity distance

$$
d_{W}\left(f, f^{\prime}\right)=\mathbb{E}_{g_{x}}\left|\int_{y}\left(f(y)-f^{\prime}(y)\right) g_{x}(y)\right|
$$

Weak regularity partitions

- Frieze and Kannan (1999) an ε-regular partition of a graph G is V_{1}, \ldots, V_{k}

$$
\left|e(S, T)-\sum_{i, j} d_{i j} \cdot\right| S \cap V_{i}|\cdot| T \cap V_{j}| | \leq \varepsilon
$$

- $\exists \varepsilon$-regular partitions with k parts \Leftrightarrow
\exists cover of typical vertices with $k \varepsilon$-balls except for ε
- finite dimension \Rightarrow polynomial weak regularity partition

Finitely forcible Graphons

- a graphon W is finitely forcible if there exist H_{1}, \ldots, H_{k} and d_{1}, \ldots, d_{k} such that W is the only graphon with the expected density of H_{i} equal to d_{i}
- \Leftrightarrow the only graphon minimizing $\sum \alpha_{j} d\left(H_{j}^{\prime}, W\right)$
- Lovász and Sós (2008),

Every step function is finitely forcible.

Finitely forcible graphons

- Conjecture (Lovász and Szegedy): Every extremal problem min $\sum \alpha_{j} d\left(H_{j}, W\right)$ has a finitely forcible optimal solution.
- extremal graph theory problem \rightarrow finitely forcible optimal solution \rightarrow simple structure gives new bounds on old problems (bounded dimension, few kinds of typical vertices)

Finitely forcible graphons

- Conjectures (Lovász and Szegedy): The space $T(W)$ of a finitely forcible W is compact. The space $T(W)$ has finite dimension.
- Theorem (Glebov, K., Volec): $T(W)$ can fail to be locally compact
- Theorem (Glebov, Klimošová, K.): $T(W)$ can have a part homeomorphic to $[0,1]^{\infty}$
- Theorem (Cooper, Kaiser, K., Noel):
\exists finitely forcible W such that every ε-regular partition has at least $2^{\varepsilon^{-2} / \log \log \varepsilon^{-1}}$ parts.

Parameter testing

- graph parameter \mathcal{P} : graphs $\rightarrow \mathbb{R}$
- large input data, not possible to process providing an estimate based on a small sample
- \mathcal{P} is testable if there exists a randomized algorithm that estimates the parameter \mathcal{P} within the additive error ε based on a sample of size $f(\varepsilon)$ with probability $\geq 1-\varepsilon$
- \mathcal{P} is testable $\Leftrightarrow \mathcal{P}$ is continuous on the graphon space

Questions?

Overview of the talk

- Limits of dense structures

Survey of main results in the area
Limits of permutations and dense graphs

- The flag algebra method

Applications in extremal combinatorics

- Limits of sparse structures

Various concepts, less understood

FLAG ALGEBRAS: HOMOMORPHISMS

- algebra \mathcal{A} on formal linear combinations of graphs addition and multiplication by a scalar
- if W is a graphon, define $f\left(\sum \alpha_{i} H_{i}\right):=\sum \alpha_{i} d\left(H_{i}, W\right)$ the function f is a homomorphism from \mathcal{A} to \mathbb{R} we define multiplication in \mathcal{A} on the next slide
- $\operatorname{Ker}(f)$ always contains certain elements
e.g. $K_{2}-\frac{1}{3} \overline{K_{1,2}}-\frac{2}{3} K_{1,2}-\frac{3}{3} K_{3}$
$f\left(K_{2}\right)=\frac{1}{3} f\left(\overline{K_{1,2}}\right)+\frac{2}{3} f\left(K_{1,2}\right)+\frac{3}{3} f\left(K_{3}\right)$

Flag algebras: multiplication

- picking two pairs of vertices \approx picking a quadruple assuming the considered graph G is huge
- $d\left(K_{2}, G\right) \times d\left(K_{2}, G\right)=\frac{1}{3} d\left(K_{2} \cup K_{2}, G\right)+\frac{1}{3} d\left(P_{4}, G\right)+\cdots$
- this leads to a definition of a product of two graphs

- If W is the unique graphon with $d\left(H_{i}, W\right)=\alpha_{i}$,
it is the unique graphon with $\sum_{i}\left(d\left(H_{i}, W\right)-\alpha_{i}\right)^{2}=0$.

$$
\sum_{i}\left(H_{i}-\alpha_{i} K_{1}\right)^{2}=\sum_{j} \beta_{j} H_{j}^{\prime}
$$

Rooted homomorphisms

- consider a graph G with a distinguish vertex (root) a random sample always includes the root
- algebra \mathcal{A}^{\bullet} on combinations of rooted graphs
- rooted graph \rightarrow a homomorphism from \mathcal{A}^{\bullet} to \mathbb{R} random choice of the root \rightarrow probability distribution on homomorphisms f^{\bullet} from \mathcal{A}^{\bullet} to \mathbb{R}

$$
\frac{f \bullet\left(K_{2}^{\bullet}\right)=1 / 2, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=1 / 2, f \bullet\left(K_{3}^{\bullet}\right)=0, \ldots}{f_{\bullet}^{\bullet}\left(K_{2}^{\bullet}\right)=1, f^{\bullet}\left(\overline{K_{2}^{\bullet}}\right)=0, f^{\bullet}\left(K_{3}^{\bullet}\right)=3 / 4, \ldots}
$$

AvERAGING OPERATOR

- goal: $f\left(\llbracket x \rrbracket_{\bullet}\right)=\mathbb{E}_{\bullet} f^{\bullet}(x)$ for $x \in \mathcal{A}^{\bullet}$

$$
\left\|\wp_{0}\right\|_{0}=\frac{1}{3} \wp^{\circ} \|_{0}=\frac{2}{3} \stackrel{\infty}{0}
$$

- expressing degree constraints:

$$
f\left(\llbracket\left(K_{2}^{\bullet}-1 / 3\right)^{2}\left(K_{2}^{\bullet}-2 / 3\right)^{2} \rrbracket \bullet\right)=0
$$

- if A is PSD $n \times n$-matrix and $x \in \mathcal{A}^{n}, f\left(x^{T} A x\right) \geq 0$ example: $f\left(\left(\alpha K_{2}-\beta \overline{K_{2}}\right)^{2}\right)=f\left(\sum \alpha_{i} H_{i}\right) \geq 0$ analogously for vectors x with entries from \mathcal{A}^{\bullet}
- search for such inequalities can be computer assisted

Flag algebras: Example
(

QUASIRANDOMNESS OF GRAPHS

- Theorem (Thomason):
$d_{\text {hom }}(H, G)=d\left(H, G_{n, p}\right)$ for $H=K_{2}, C_{4} \Rightarrow G \approx G_{n, p}$
- $d(H, W)=d\left(H, W_{p}\right)$ for all 4-vertex $H \Rightarrow W=W_{p}$
$\forall x: \int W(x, y) \mathrm{d} y=p \Longleftrightarrow \llbracket\left(K_{2}^{\bullet}-p\right)^{2} \rrbracket \bullet=0$
$\forall x, x^{\prime}: \int W(x, y) W\left(x^{\prime}, y\right) \mathrm{d} y=p^{2}$
$\Longleftrightarrow \llbracket\left(K_{3}^{\bullet \bullet}+K_{1,2}^{\bullet \bullet}-p^{2}\right)^{2} \rrbracket$ •• $=0$
$\Longrightarrow \forall x: \int W(x, y)^{2} \mathrm{~d} y=p^{2}$
$\forall x: \int W(x, y) \mathrm{d} y=p \wedge \int W(x, y)^{2} \mathrm{~d} y=p^{2}$
$\Longrightarrow \forall x, y: W(x, y)=p$

Questions?

Sparse graph convergence

- convergence of graphs with bounded degree trivially converging to the zero graphon
- need of a different notion of convergence several notions, each having some cons
- absence of understood analytic representation Aldous and Lyons Conjecture, relation to group theory Does every graphing has a sequence converging to it?

LEFT CONVERGENCE

- introduced by Benjamini and Schramm in 2001
- bounded number of types of d-neighborhoods convergence of statistic of d-neighborhoods
- cons: connected vs. disconnected bipartite vs. non-bipartite graphs

LOCAL-GLOBAL CONVERGENCE

- introduced by Hatami, Lovász and Szegedy in 2012
- types of d-neighborhoods k-vertex-colored graphs convergence of statistic of such d-neighborhoods attainable by a k-vertex-coloring of graphs
- $\left(G_{i}\right)_{i \in \mathbb{N}} \rightarrow\left(A_{i}\right)_{i \in \mathbb{N}}$ where $A_{i} \subseteq \mathbb{R}^{K}$ and K is $\#$ of types $\forall \varepsilon>0 \exists n \forall i, j>n, x \in A_{i} \exists y \in A_{j}\|x-y\| \leq \varepsilon$
- almost bipartite vs. non-bipartite graphs local-global convergence \Rightarrow left convergence

GRAPHINGS

- graphing G is a graph with $V(G)=[0,1]$ bounded maximum degree, Borel measurable edge-set mass preservation: $\int_{A} \operatorname{deg}_{B}(x) \mathrm{d} x=\int_{B} \operatorname{deg}_{A}(y) \mathrm{d} y$
- Theorem (Elek, 2007)

Every BS-convergent sequence has a graphing.
Theorem (Hatami, Lovász, Szegedy, 2012)
Every LG-convergent sequence has a graphing.

- Conjecture (Aldous, Lyons)

Every graphing is a BS-limit of a graph sequence.

Right convergence

- developed by Borgs, Chayes, Kahn and Lovász in 2013

$$
\lim _{i \rightarrow \infty} \frac{\log \operatorname{hom}\left(G_{i}, H\right)}{\left|G_{i}\right|}
$$

$\operatorname{hom}(G, H)=\sum_{f: G \rightarrow H} \prod_{v \in V} w(f(v)) \prod_{v v^{\prime} \in E} w\left(f(v) f\left(v^{\prime}\right)\right)$

- cons: connected vs. disconnected
$\frac{\log \operatorname{hom}(G, H)}{|G|}=\frac{\log \operatorname{hom}(G \cup G, H)}{|G \cup G|}$

RIGHT \Rightarrow LEFT CONVERGENCE

- complex proof by Borgs, Chayes, Kahn and Lovász
- use LLL to count $\operatorname{hom}\left(G, H_{k}\right)$ for $H_{k}=K_{k} \backslash K_{2}$ if $p \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)$, then $\geq \prod_{i}\left(1-x_{i}\right)$ $p=\frac{2}{k^{2}} \leq\left(\frac{2}{k^{2}}+\frac{c}{k^{4}}\right)\left(1-\frac{2}{k^{2}}-\frac{c}{k^{4}}\right)^{2 \Delta}$ $\operatorname{hom}\left(G, H_{k}\right) \geq k^{|G|} \cdot\left(1-\frac{2}{k^{2}}-\frac{c}{k^{4}}\right)^{|E(G)|}$
- upper bound given by Suen's inequality $\operatorname{hom}\left(G, H_{k}\right) \leq k^{|G|} \cdot e^{\frac{2|E(G)| \Delta}{k^{3}}}\left(1-\frac{2}{k^{2}}\right)^{|E(G)|}$
- $\frac{\log \operatorname{hom}\left(G, H_{k}\right)}{|G|}=k-\frac{|E(G)|}{|G| \cdot k^{2}}+O\left(\frac{\Delta^{2}}{k^{3}}\right)$

Partition convergence

- introduced by Bollobás and Riordan in 2011
- statistic of a k-partition: $\left(a_{1}, \ldots, a_{k}, d_{11}, d_{12}, \ldots, d_{k k}\right)$ convergence of attainable statistic of k-partitions
- $n \times C_{4}$ vs. $n \times C_{6}$: same attainable statistic if $k=2: a_{1}+a_{2}=1, a_{1}=d_{11}+d_{12} / 2, a_{2}=d_{22}+d_{12} / 2$

LARGE DEVIATION CONVERGENCE

- introduced by Borgs, Chayes and Gamarnik in 2013
- counting k-partitions with a statistic $x \in \mathbb{R}^{k+\binom{k+1}{2}}$

$$
r(x)=\lim _{\varepsilon \rightarrow 0} \lim _{i \rightarrow \infty}-\frac{\log \frac{\# k \text {-partitions } \varepsilon \text {-close to } x}{k^{\left|G_{i}\right|}}}{\left|G_{i}\right|}
$$

possible values: $[0, \log k] \cup\{\infty\}$
number of k-partitions with statistic $x \approx k^{|G|} \cdot e^{-r(x)|G|}$

- \Rightarrow partition convergence (the limit is finite)
\Rightarrow right convergence (weighted partitions)

LARGE DEVIATION \Rightarrow RIGHT CONVERG.

- $\operatorname{hom}(G, H)=\sum_{f: G \rightarrow H} \prod_{v \in V} w(f(v)) \prod_{v v^{\prime} \in E} w\left(f(v) f\left(v^{\prime}\right)\right)$
- if $k=|H|$, determined by the statistic $x \in \mathbb{R}^{k+\binom{k+1}{2}}$
$\approx \sum_{x} k^{|G|} e^{-r(x)|G|} \prod_{v_{i}} w\left(v_{i}\right)^{x_{i}|G|} \prod_{v_{i} v_{j}} w\left(v_{i} v_{j}\right)^{x_{i j}|G|}$
- What is $\lim _{i \rightarrow \infty} \frac{\log h o m\left(G_{i}, H\right)}{\left|G_{i}\right|}$?
$\sup _{x} \log k-r(x)+\sum_{v_{i}} x_{i} \log w\left(v_{i}\right)+\sum_{v_{i} v_{j}} x_{i} x_{j} \log w\left(v_{i} v_{j}\right)$
convergence of $r(x) \Rightarrow$ right convergence

Mutual Relations

Questions?

ExERCISES

- Compute the density of 123 in the permutons below.
- Describe the limit of $K_{n / 3} \cup K_{2 n / 3}$ and show that it is finitely forcible.
- Show that every BS-converegent sequence of 2-regular graphs has a graphing.

